

Mark Scheme (Results)

January 2024

Pearson Edexcel International Advanced Level In Further Pure Mathematics F2 (WFM02) Paper 01

January 2024 WFM02 Further Pure Mathematics F2 Mark Scheme

Question Number	Scheme	Notes	Marks
1	$\frac{1}{x+2} > 2x$	+3	
	$\frac{1 - (x+2)(2x+3)}{x+2} > 0 \Longrightarrow$	$2x^2 + 7x + 5 = 0$	
	x+2 > (2x+3)	$(x+2)^2$	
	$\Rightarrow (x+2)(2x^2+7x+5) = 0 \text{ or } 2$	$x^3 + 11x^2 + 19x + 10 = 0$	
	$\frac{1}{x+2} = 2x+3 \Longrightarrow (2x+3)(x+2)$	$)-1=2x^2+7x+5=0$	M1
	Uses algebra to obtain a 3TQ, $(x + 2)$ multiplie condone incorrect inequality signs but the first appropriate so do not accept work with e.g., (d by a 3TQ or a 4TC. Allow slips and st algebraic step should be otherwise	
	implied by solutions. Graphical attempts algebraically. Squaring first is acceptable $(4x^4 + 28x^3 + 73x^2 + 8x^3 +$	so allow M1 for obtaining a 5TQ	
	e.g., $(2x+5)(x+1)=0 \Rightarrow$ Both -1 and $-\frac{5}{2}$	from appropriate work and no extra	
	$r = \frac{5}{1}$ incorrect cvs. M	Tay only be seen in the solution set. ving a 3TQ etc. by calculator.	A1
	x = -2 solution set. This i algebraic manip	a critical value. May only be seen in s the only mark available if there is no sulation seen. Allow from any or no e.g., from $(2x+3)(x+2)=0$	B1
	$\Rightarrow x < -\frac{5}{2}, -2 < x < -1 \text{ or e.g.}$	$(-\infty, -2.5), (-2, -1)$	
	M1 : For the regions $x < a$, $-2 < x < b$ with rea		
	b < x < -2 as a notational		
	Condone any non-strict inequality signs an dependent but must follow an attempt A1: Correct solution set in any form. Do not subsequently incorrectly amended. Allow all sign was seen earlier in	ot at algebraic manipulation. It isw if the correct inequalities are marks even if an incorrect inequality at the working.	M1 A1
	Examples		
	$-\frac{5}{2} > x \text{ or } -2 < x < -1 \text{ M1 A1}$ x	$< -\frac{3}{2}$ and $-2 < x < -1$ M1 A1	
	(Accept any word between the $x < -\frac{5}{2}$, $-1 < x < -2$ M1 A	9 ,	
	$\left(-\infty, -\frac{5}{2}\right) \cap \left(-2, -1\right)$ M1A0 (incorrect symbol – a	_	
	$x < -\frac{5}{2} - 2 < x x < -1 \text{ M}$		
			(5)
			Total 5

Question Number	Scheme	Notes	Marks
2(a)	(i) $z = 6 - 6\sqrt{3}i \Rightarrow z = \sqrt{6^2 + (6\sqrt{3})^2} = 12$	+12 only. Accept if just stated	B1
	(ii) e.g., $\arg z = -\arctan$	$n\frac{6\sqrt{3}}{6}$	
	Attempts an expression for a relevant angle. Look for $\pm \operatorname{arc}$	$\tan\left(\pm\frac{6\sqrt{3}}{6}\right)$ or e.g., $\pm\tan^{-1}\left(\pm\frac{1}{\sqrt{3}}\right)$	M1
	If arctan is not seen allow e.g., $\tan \alpha = \frac{6\sqrt{3}}{6} \Rightarrow \alpha = \frac{6\sqrt{3}}{6}$	3	
	If using sin or cos the hypotenuse		
	$\arg z$ or $\arg or \arg ment (of$	J	A1*
	A correct proof with no incorrect work/statements consistent , e.g., $\theta = -\frac{\pi}{3}$ cannot follow		111
	$z = 12\left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) = 12\left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right) \text{ or } 12e^{-\frac{\pi}{3}i} \text{ or } \cos\theta$		
(ii) Way 2	M1: Factorises out 12 and writes in trig or exp form or identifies $\cos \theta = \frac{1}{2}$ and $\sin \theta = -\frac{\sqrt{3}}{2}$ A1: Acceptable statement with all work correct		
	$z = 12\left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right) \text{ or } 12e^{-\frac{\pi}{3}i} \text{ or } 12\left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) =$		
(ii) Way 3	M1: Assumes result, writes correctly for their A1: Obtains $6-6\sqrt{3}i$ and makes acceptable st	12 and attempts $a + ib$ form	
	ν		(3)
(b)	$z = "12" \left(\cos \left(-\frac{\pi}{3} \right) + i \sin \left(-\frac{\pi}{3} \right) \right) \text{ or } "12" e^{-\frac{\pi}{3}i} \text{ [n]}$	o missing "i" unless recovered]	
	Correct trig or exp. form with their 12. Could be implied	ed by their z^4 in trig or exp. form e.g.,	M1
	$("12"e^{-\frac{\pi}{3}i})^4$ Allow equivalent values of θ e.g. $\frac{5\pi}{3}$	and use of e.g., $\sin\left(-\frac{\pi}{3}\right) = -\sin\left(\frac{\pi}{3}\right)$.	
	Condone poor bracketing. Allow this mark if $+2k\pi$,		
	$z^4 = 20736 \left(\cos \left(-\frac{4\pi}{3} \right) + i \sin \left(-\frac{4\pi}{3} \right) \right) \text{ or } 20736 \left(\cot \left(-\frac{4\pi}{3} \right) \right)$	$\cos -\frac{4\pi}{3} + i \sin -\frac{4\pi}{3}$ or $20736e^{-\frac{4\pi}{3}i}$	
	Correct z^4 in any form. 12^4 evaluated and arg. of $-\frac{4\pi}{3}$		A1
	may use e.g., $\sin\left(-\frac{4\pi}{3}\right) = -\sin\left(\frac{4\pi}{3}\right)$. No "k"s. Co		_
	Only accept $-10368 + 10368\sqrt{3}i$ or $20736\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}\right)$	i) provided evidence of de Moivre.	
			(2)

2(c) $w = z^{\frac{1}{2}} = (\pm)\sqrt{12\pi} \left(\cos\left(\frac{-\frac{\pi}{3}}{2}\right) + i\sin\left(\frac{-\frac{\pi}{3}}{2}\right)\right) \text{ or e.g., } (\pm) "2\sqrt{3}"e^{-\frac{\pi}{6}i}$ [no missing "i" unless recovered] Correct use of de Moivre's theorem with $-\frac{\pi}{3}$ and their 12 to attempt one square root. Allow work with argument of $\frac{5\pi}{3}$ for $-\frac{\pi}{3}$ and use of e.g., $\sin\left(-\frac{\pi}{6}\right) = -\sin\left(\frac{\pi}{6}\right)$. Condone poor bracketing. M0 if z^4 used for z . Allow this mark if $+2k\pi$, $-2k\pi$, $\pm 2k\pi$ appears with argument $w = 3 - \sqrt{3}i, -3 + \sqrt{3}i \text{ oe}$ Alft: One correct exact root in $a + ib$ or $c(a + ib)$ form (a, b, c) may be unsimplified but not numerical trig expressions) ft their 12 only i.e. $(\pm)\sqrt{12\pi}\left(\frac{\sqrt{5}}{2} - \frac{1}{2}i\right)$ Al: Both exact roots (no others) correct in $a + ib$ form $-a$ and b may be unsimplified (but not numerical trig expressions) e.g. accept $a = (\pm)\sqrt{12}\frac{\sqrt{3}}{2}, (\pm)\sqrt{\frac{36}{2}} b = (\mp)\sqrt{\frac{12}{2}}, (\mp)\frac{2\sqrt{3}}{2}$ Accept $\pm(3-\sqrt{3}i)$ but just $\pm 3-\sqrt{3}i$ is A1 A0. Just $\pm\sqrt{3}\left(\sqrt{3}-i\right)$ is A1 A0 Note: $w^2 = r^2\left(\cos 2\theta + i\sin 2\theta\right) = z \Rightarrow r$, θ , $w =$ is an acceptable approach Alt $w^2 = z \Rightarrow (a+ib)^2 = a^2 - b^2 + 2abi = 6 - 6\sqrt{3}i \Rightarrow a^2 - b^2 = 6$, $2ab = -6\sqrt{3}$ $b = -\frac{3\sqrt{3}}{a} \Rightarrow a^2 - \frac{27}{a^2} = 6 \Rightarrow a^4 - 6a^2 - 27 = (a^2 - 9)(a^2 + 3) = 0 \Rightarrow a^2 = 9$, $a = \pm 3$, $b = \mp\sqrt{3}$ M1: From a correct starting point, expands and equates real and imaginary parts to form two equations in a and b and obtains at least one value for both a and b $w = 3 - \sqrt{3}i, -3 + \sqrt{3}i$ A1: One correct exact root in $a + ib$ or $c(a + ib)$ form (a, b, c) may be unsimplified) A1: Both exact roots (no others) correct in $a + ib$ form $-a$ and b may be unsimplified)	Question Number	Scheme	Notes	Marks
Alft: One correct exact root in $a+ib$ or $c(a+ib)$ form (a,b,c) may be unsimplified but not numerical trig expressions) ft their 12 only i.e. $(\pm)\sqrt[n]{12}^n\left(\frac{\sqrt{5}}{2}-\frac{1}{2}\mathrm{i}\right)$ A1: Both exact roots (no others) correct in $a+ib$ form $-a$ and b may be unsimplified (but not numerical trig expressions) e.g. accept $a=(\pm)\sqrt{12}\frac{\sqrt{3}}{2}, (\pm)\frac{\sqrt{36}}{2} b=(\mp)\frac{\sqrt{12}}{2}, (\mp)\frac{2\sqrt{3}}{2}$ Accept $\pm(3-\sqrt{3}\mathrm{i})$ but just $\pm 3-\sqrt{3}\mathrm{i}$ is A1 A0. Just $\pm\sqrt{3}\left(\sqrt{3}-\mathrm{i}\right)$ is A1 A0 Note: $w^2=r^2\left(\cos 2\theta+i\sin 2\theta\right)=z\Rightarrow r, \theta, w=$ is an acceptable approach $w^2=z\Rightarrow (a+\mathrm{i}b)^2=a^2-b^2+2ab\mathrm{i}=6-6\sqrt{3}\mathrm{i}\Rightarrow a^2-b^2=6, 2ab=-6\sqrt{3}$ $b=-\frac{3\sqrt{3}}{a}\Rightarrow a^2-\frac{27}{a^2}=6\Rightarrow a^4-6a^2-27=\left(a^2-9\right)\left(a^2+3\right)=0\Rightarrow a^2=9, a=\pm 3, b=\mp\sqrt{3}$ M1 : From a correct starting point, expands and equates real and imaginary parts to form two equations in a and b and obtains at least one value for both a and b $w=3-\sqrt{3}\mathrm{i}, -3+\sqrt{3}\mathrm{i}$ A1: One correct exact root in $a+\mathrm{i}b$ or $c(a+\mathrm{i}b)$ form (a,b,c) may be unsimplified)		[no missing "i" unless recovered] Correct use of de Moivre's theorem with $-\frac{\pi}{3}$ and their 12 to attempt one square root. Allow work with argument of $\frac{5\pi}{3}$ for $-\frac{\pi}{3}$ and use of e.g., $\sin\left(-\frac{\pi}{6}\right) = -\sin\left(\frac{\pi}{6}\right)$. Condone		M1
A1ft: One correct exact root in $a+ib$ or $c(a+ib)$ form (a,b,c) may be unsimplified but not numerical trig expressions) ft their 12 only i.e. $(\pm)\sqrt{"12"}\left(\frac{\sqrt{5}}{2}-\frac{1}{2}i\right)$ A1: Both exact roots (no others) correct in $a+ib$ form $-a$ and b may be unsimplified (but not numerical trig expressions) e.g. accept $a=(\pm)\sqrt{12}\frac{\sqrt{3}}{2}, (\pm)\frac{\sqrt{36}}{2} b=(\mp)\frac{\sqrt{12}}{2}, (\mp)\frac{2\sqrt{3}}{2}$ Accept $\pm(3-\sqrt{3}i)$ but just $\pm 3-\sqrt{3}i$ is A1 A0. Just $\pm\sqrt{3}\left(\sqrt{3}-i\right)$ is A1 A0 Note: $w^2=r^2\left(\cos 2\theta+i\sin 2\theta\right)=z\Rightarrow r$, θ , $w=$ is an acceptable approach Alt $w^2=z\Rightarrow (a+ib)^2=a^2-b^2+2abi=6-6\sqrt{3}i\Rightarrow a^2-b^2=6,\ 2ab=-6\sqrt{3}$ $b=-\frac{3\sqrt{3}}{a}\Rightarrow a^2-\frac{27}{a^2}=6\Rightarrow a^4-6a^2-27=(a^2-9)(a^2+3)=0\Rightarrow a^2=9,\ a=\pm 3,\ b=\mp\sqrt{3}$ M1: From a correct starting point, expands and equates real and imaginary parts to form two equations in a and b and obtains at least one value for both a and b $w=3-\sqrt{3}i,-3+\sqrt{3}i$ A1: One correct exact root in $a+ib$ or $c(a+ib)$ form (a,b,c) may be unsimplified)		M0 if z^4 used for z. Allow this mark if $+2$	$2k\pi$, $-2k\pi$, $\pm 2k\pi$ appears with argument	
Alt $w^2 = z \Rightarrow (a+ib)^2 = a^2 - b^2 + 2abi = 6 - 6\sqrt{3}i \Rightarrow a^2 - b^2 = 6, \ 2ab = -6\sqrt{3}$ $b = -\frac{3\sqrt{3}}{a} \Rightarrow a^2 - \frac{27}{a^2} = 6 \Rightarrow a^4 - 6a^2 - 27 = (a^2 - 9)(a^2 + 3) = 0 \Rightarrow a^2 = 9, \ a = \pm 3, \ b = \mp \sqrt{3}$ M1: From a correct starting point, expands and equates real and imaginary parts to form two equations in a and b and obtains at least one value for both a and b $w = 3 - \sqrt{3}i, -3 + \sqrt{3}i$ A1: One correct exact root in $a + ib$ or $c(a + ib)$ form (a, b, c) may be unsimplified)		A1ft: One correct exact root in $a+ib$ or $c(a+ib)$ form (a, b, c) may be unsimplified but not numerical trig expressions) ft their 12 only i.e. $(\pm)\sqrt{"12"}\left(\frac{\sqrt{3}}{2}-\frac{1}{2}i\right)$ A1: Both exact roots (no others) correct in $a+ib$ form $-a$ and b may be unsimplified (but not numerical trig expressions) e.g. accept $a = (\pm)\sqrt{12}\frac{\sqrt{3}}{2}, (\pm)\frac{\sqrt{36}}{2} b = (\mp)\frac{\sqrt{12}}{2}, (\mp)\frac{2\sqrt{3}}{2}$		A1ft A1
$b = -\frac{3\sqrt{3}}{a} \Rightarrow a^2 - \frac{27}{a^2} = 6 \Rightarrow a^4 - 6a^2 - 27 = (a^2 - 9)(a^2 + 3) = 0 \Rightarrow a^2 = 9, \ a = \pm 3, \ b = \mp \sqrt{3}$ M1 : From a correct starting point, expands and equates real and imaginary parts to form two equations in <i>a</i> and <i>b</i> and obtains at least one value for both <i>a</i> and <i>b</i> $w = 3 - \sqrt{3}i, -3 + \sqrt{3}i$ A1 : One correct exact root in <i>a</i> + <i>ib</i> or $c(a + ib)$ form (a, b, c) may be unsimplified)		Note: $w^2 = r^2 (\cos 2\theta + i \sin 2\theta) = z \Rightarrow r, \theta, w =$ is an acceptable approach		(3)
	Alt	$b = -\frac{3\sqrt{3}}{a} \Rightarrow a^2 - \frac{27}{a^2} = 6 \Rightarrow a^4 - 6a^2 - 27 = (a^2 - 9)(a^2 + 3) = 0 \Rightarrow a^2 = 9, \ a = \pm 3, \ b = \mp \sqrt{3}$ M1 : From a correct starting point, expands and equates real and imaginary parts to form two equations in <i>a</i> and <i>b</i> and obtains at least one value for both <i>a</i> and <i>b</i> $w = 3 - \sqrt{3}i, -3 + \sqrt{3}i$ A1 : One correct exact root in $a + ib$ or $c(a + ib)$ form (a, b, c) may be unsimplified) A1 : Both exact roots (no others) correct in $a + ib$ form $-a$ and b may be unsimplified		Total 8

$\frac{r}{\sqrt{r(r+1)} + \sqrt{r(r-1)}} \times \frac{\sqrt{r(r+1)} - \sqrt{r(r-1)}}{\sqrt{r(r+1)} - \sqrt{r(r-1)}} = \frac{r(r-1)}{\sqrt{r(r+1)} - \sqrt{r(r-1)}} = \frac{r}{\sqrt{r(r+1)} - \sqrt{r(r-1)}} = \frac{r}{\sqrt{r(r-1)} - \sqrt{r(r-1)}} = \frac{r}{r($	Question Number	Scheme	Notes	Marks
$ = \frac{r(\sqrt{r(r+1)} - \sqrt{r(r-1)})}{r(r+1) - r(r-1)} = \frac{\sqrt{r(r+1)} - \sqrt{r(r-1)}}{2} \text{ or } A = \frac{1}{2} $ Correct expression or correct value for A . Condone poor notation if intention clear. There must be (minimal) correct supporting working. Alternative: $ A = \frac{r}{(\sqrt{r(r+1)} + \sqrt{r(r-1)})} (\sqrt{r(r+1)} - \sqrt{r(r-1)}) = \frac{r}{r(r+1) - r(r-1)} \text{ or } \frac{r}{r^2 + r - r^2 + r} \text{ or } \frac{r}{2r} \Rightarrow A = \frac{1}{2} $ M1: Correctly makes A the subject A1: Correct completion with one intermediate fraction (2) $ \frac{\sqrt{1\times 2} - \sqrt{1\times 0}}{\sqrt{r(r+1)} + \sqrt{r(r-1)}} = \frac{1}{2} \sum_{n=1}^{n} \frac{\sqrt{n(n-1)}(n-1+1) - \sqrt{n(n-1)}(n-1-1)} \left(-\sqrt{n(n-1)} - \sqrt{n(n-1)}(n-2) + \sqrt{n(n-1)} - \sqrt{n(n-1)} \right) + \sqrt{n(n-1)} - \sqrt{n(n-1)} \right) $ M1: Applies the method of differences for $r = 1$ and $r = n$ in the given expression with or without their A and obtains one correct row of these 2 . M1: Applies the method of differences for $r = 1$, $r = n$ and either $r = 2$ or $r = n - 1$ in the given expression with/without their A and obtains 2 correct rows of these 4 . When considering how many rows are correct, if A has been elearly applied to any term then assess all rows as if A has been applied throughout. Condone missing bracket if their A is applied to a row e.g., " $\frac{4}{2} \times \sqrt{6} - \sqrt{2}$ " if it is recovered but e.g., $\frac{6}{2} - \sqrt{2}$ is an incorrect row. Ignore a row for $r = 0$. Condone equivalent work with r or e.g., k used for n . Both marks can be implied by a correct final expression with or without their A provided there are at least any two correct rows of differences i.e., " $\frac{1}{2}$ " $\sqrt{n(n+1)} - 0$) or $\sqrt{n(n+1)} - 0$ Note: row 3 is " $\frac{n}{2}$ " $\sqrt{12}$ (or $\sqrt{3}$) $-\sqrt{6}$, row 4 is " $\frac{n}{2}$ " $\sqrt{\sqrt{20}}$ (or $\sqrt{3}$) $\frac{n(n-3)(n-1)}{2} - \sqrt{n(n-3)(n-1)} - \sqrt{n(n-1)} - \frac{n(n-1)}{2} - \sqrt{n(n-1)} - \frac{n(n-1)}{2} - \frac$		$\frac{r}{\sqrt{r(r+1)} + \sqrt{r(r-1)}} \times \frac{\sqrt{r(r+1)} - \sqrt{r(r-1)}}{\sqrt{r(r+1)} - \sqrt{r(r-1)}}$	A correct multiplier to rationalise the denominator seen or implied by correct work	M1
$A = \frac{r}{\left(\sqrt{r(r+1)} + \sqrt{r(r-1)}\right)\left(\sqrt{r(r+1)} - \sqrt{r(r-1)}\right)} = \frac{r}{r(r+1) - r(r-1)}^{\text{or}} \frac{r}{r^2 + r - r^2 + r}^{\text{or}} \frac{r}{2r} \Rightarrow A = \frac{1}{2}$ $M1: \text{ Correctly makes } A \text{ the subject } A1: \text{ Correct completion with one intermediate fraction}$ $\sum_{r=1}^{n} \frac{r}{\sqrt{r(r+1)} + \sqrt{r(r-1)}} = \frac{1}{2}^{n} $ $\dots + \sqrt{(n-1)(n-1+1)} - \sqrt{(n-1)(n-1-1)} \left(= \sqrt{n(n-1)} - \sqrt{(n-1)(n-2)} + \sqrt{n(n+1)} - \sqrt{(n-1)(n-1)} \right) + \sqrt{n(n-1)} - \sqrt{(n-1)(n-1)} \left(= \sqrt{n(n-1)} - \sqrt{(n-1)(n-2)} + \sqrt{n(n-1)} - \sqrt{(n-1)(n-1)} \right) + \sqrt{n(n-1)} - \sqrt{(n-1)(n-1)} \left(= \sqrt{n(n-1)} - \sqrt{(n-1)(n-2)} + \sqrt{n(n-1)} - \sqrt{(n-1)(n-1)} \right) + \sqrt{n(n-1)} - \sqrt{(n-1)(n-1)} \right)$ $M1: \text{ Applies the method of differences for } r = 1 \text{ and } r = n \text{ in the given expression with or without their } A \text{ and obtains one correct row of these } 2.$ $M1: \text{ Applies the method of differences for } r = 1, r = n \text{ and either } r = 2 \text{ or } r = n - 1 \text{ in the given expression with/without their } A \text{ and obtains 2 correct rows of these } 4.$ $\text{When considering how many rows are correct, if } A \text{ has been clearly applied to any term then assess all rows as if } A \text{ has been applied throughout.}$ $\text{Condone missing bracket if their } A \text{ is applied to a row e.g., } \frac{1}{2} \times \sqrt{6} - \sqrt{2} \text{ "if it is recovered but e.g., } \frac{\sqrt{6}}{2} - \sqrt{2} \text{ is an incorrect row. Ignore a row for } r = 0. \text{ Condone equivalent work with } r \text{ or e.g., } k \text{ used for } n.$ $\text{Both marks can be implied by a correct final expression with or without their } A \text{ provided there are at least any two correct rows of differences} i.e., \frac{1}{2} \left(\sqrt{n(n+1)} - 0 \right) \text{ or } \sqrt{\s$		$= \frac{r\left(\sqrt{r(r+1)} - \sqrt{r(r-1)}\right)}{r(r+1) - r(r-1)} = \frac{\sqrt{r(r+1)}}{r(r+1)}$ Correct expression or correct value for A. On the content of the c	$\frac{r(r+1) - \sqrt{r(r-1)}}{2} \text{ or } A = \frac{1}{2}$ Condone poor notation if intention clear. rrect supporting working.	A1
(b) $\sum_{r=1}^{s} \frac{r}{\sqrt{r(r+1)} + \sqrt{r(r-1)}} = \frac{1}{2} \int_{0}^{s} \frac{1}{\sqrt{r(r+1)} + \sqrt{r(r+1)}} = \frac{1}{2} \int_{0}^{s} \frac{1}{r(r+1$		$A = \frac{r}{\left(\sqrt{r(r+1)} + \sqrt{r(r-1)}\right)\left(\sqrt{r(r+1)} - \sqrt{r(r-1)}\right)} = \frac{r}{r}$	$\frac{r}{r(r+1)-r(r-1)} \operatorname{or} \frac{r}{r^2+r-r^2+r} \operatorname{or} \frac{r}{2r} \Rightarrow A = \frac{1}{2}$	(2)
$\sum_{r=1}^{n} \frac{r}{\sqrt{r(r+1)} + \sqrt{r(r-1)}} = \frac{1}{2} \frac{1}{n} \frac{1}{\sqrt{n(n+1)} + \sqrt{r(r-1)}} = \frac{1}{2} \frac{1}{n} \frac{1}{\sqrt{n(n+1)} + \sqrt{n(n+1)} - \sqrt{n(n-1)(n-1)} - (n-1)(n-1) - (n-1)(n-2)}{1} \frac{1}{\sqrt{n(n+1)} + \sqrt{n(n+1)} - \sqrt{n(n-1)} - (n-1)(n-1)} \frac{1}{\sqrt{n(n-1)} - \sqrt{n(n-1)} - (n-1)(n-2)}{1} \frac{1}{\sqrt{n(n-1)} - \sqrt{n(n-1)} - (n-1)(n-1)} \frac{1}{\sqrt{n(n-1)} - \sqrt{n(n-1)} - (n-1)(n-2)}{1} \frac{1}{\sqrt{n(n-1)} - \sqrt{n(n-1)} - \sqrt{n(n-1)} - (n-1)(n-2)}{1} \frac{1}{\sqrt{n(n-1)} - \sqrt{n(n-1)} - \sqrt{n(n-1)} - (n-1)(n-2)}{1} \frac{1}{\sqrt{n(n-1)} - \sqrt{n(n-1)} - (n-1)(n-1)}{1} \frac{1}{\sqrt{n(n-1)} - \sqrt{n(n-1)} - (n-1)(n-1)}{1} \frac{1}{\sqrt{n(n-1)} - (n-1)(n-1) - (n-1)(n-1) - (n-1)(n-1)}{1} \frac{1}{\sqrt{n(n-1)} - (n-1)(n-1) - (n-1)(n$	(b)			(2)
i.e., " $\frac{1}{2}$ " ($\sqrt{n(n+1)} - 0$) or $\sqrt{n(n+1)} - 0$ Note: row 3 is " $\frac{1}{2}$ " ($\sqrt{12}$ (or $2\sqrt{3}$) – $\sqrt{6}$), row 4 is " $\frac{1}{2}$ " ($\sqrt{20}$ (or $2\sqrt{5}$) – $\sqrt{12}$ (or $2\sqrt{3}$)) If $\frac{1}{2}$ is fully applied the rows are: $\frac{\sqrt{2}}{2}, \frac{\sqrt{6}}{2} - \frac{\sqrt{2}}{2}, \frac{\sqrt{12}}{2}$ (or $\sqrt{3}$) – $\frac{\sqrt{6}}{2}$, $\frac{\sqrt{20}}{2}$ (or $\sqrt{5}$) – $\frac{\sqrt{12}}{2}$ (or $\sqrt{3}$), , $\frac{\sqrt{(n-2)(n-1)}}{2} - \frac{\sqrt{(n-2)(n-3)}}{2}, \frac{\sqrt{n(n-1)}}{2} - \frac{\sqrt{(n-1)(n-2)}}{2}, \frac{\sqrt{n(n+1)}}{2} - \frac{\sqrt{n(n-1)}}{2}$ Correct expression in terms of n . No incorrect terms seen in differences work even if cancelled but condone the occasional poor bracket. There should be no "0" so e.g., $\frac{1}{2}$ ($\sqrt{n(n+1)} - 0$) is A0 Does not require marks in (a)		M1: Applies the method of differences for $r = \frac{1}{2}$ without their A and obtains of M1: Applies the method of differences for $r = \frac{1}{2}$ given expression with/without their A at When considering how many rows are correct then assess all rows as if A had Condone missing bracket if their A is applied to the equivalent work with $a = \frac{1}{2} - \sqrt{2}$ is an incorrect equivalent work with $a = \frac{1}{2} - \sqrt{2}$ by a correct formula of the marks can be implied by a co	$\sqrt{2\times 3} - \sqrt{2\times 1} \left(= \sqrt{6} - \sqrt{2} \right) + \dots$ $-\sqrt{(n-1)(n-1-1)} \left(= \sqrt{n(n-1)} - \sqrt{(n-1)(n-2)} \right)$ $+\sqrt{n(n+1)} - \sqrt{n(n-1)}$ 1 and $r = n$ in the given expression with or ne correct row of these 2. 1, $r = n$ and either $r = 2$ or $r = n - 1$ in the nd obtains 2 correct rows of these 4. 1, if A has been clearly applied to any term is been applied throughout. 1, if A has been clearly applied to any term is been applied throughout. 1, if A has been clearly applied to any term is been applied throughout. 1, if A has been clearly applied to any term is been applied throughout. 1, if A has been clearly applied to any term is been applied throughout. 2, if A has been clearly applied to any term is been applied throughout. 2, if A has been clearly applied to any term is been applied throughout. 2, if A has been clearly applied to any term is been applied throughout. 2, if A has been clearly applied to any term is been applied throughout. 3, if A has been clearly applied to any term is been applied throughout. 3, if A has been clearly applied to any term is been applied throughout. 3, if A has been clearly applied to any term is been applied throughout. 3, if A has been clearly applied to any term is been applied throughout. 4, if A has been clearly applied to any term is been applied throughout. 4, if A has been clearly applied to any term is been applied throughout. 4, if A has been clearly applied to any term is been applied throughout. 4, if A has been clearly applied to any term is A in the following in A in the following in A i	
Note: row 3 is " $\frac{1}{2}$ "($\sqrt{12}$ (or $2\sqrt{3}$) – $\sqrt{6}$), row 4 is " $\frac{1}{2}$ "($\sqrt{20}$ (or $2\sqrt{5}$) – $\sqrt{12}$ (or $2\sqrt{3}$)) If $\frac{1}{2}$ is fully applied the rows are: $\frac{\sqrt{2}}{2}, \frac{\sqrt{6}}{2} - \frac{\sqrt{2}}{2}, \frac{\sqrt{12}}{2}$ (or $\sqrt{3}$) – $\frac{\sqrt{6}}{2}, \frac{\sqrt{20}}{2}$ (or $\sqrt{5}$) – $\frac{\sqrt{12}}{2}$ (or $\sqrt{3}$), , $\frac{\sqrt{(n-2)(n-1)}}{2} - \frac{\sqrt{(n-2)(n-3)}}{2}, \frac{\sqrt{n(n-1)}}{2} - \frac{\sqrt{(n-1)(n-2)}}{2}, \frac{\sqrt{n(n+1)}}{2} - \frac{\sqrt{n(n-1)}}{2}$ Correct expression in terms of n . No incorrect terms seen in differences work even if cancelled but condone the occasional poor bracket. There should be no "0" so e.g., $\frac{1}{2}(\sqrt{n(n+1)} - 0)$ is A0 Does not require marks in (a)				
If $\frac{1}{2}$ is fully applied the rows are: $\frac{\sqrt{2}}{2}, \frac{\sqrt{6}}{2} - \frac{\sqrt{2}}{2}, \frac{\sqrt{12}}{2} (\text{or } \sqrt{3}) - \frac{\sqrt{6}}{2}, \frac{\sqrt{20}}{2} (\text{or } \sqrt{5}) - \frac{\sqrt{12}}{2} (\text{or } \sqrt{3}), \dots$ $\dots, \frac{\sqrt{(n-2)(n-1)}}{2} - \frac{\sqrt{(n-2)(n-3)}}{2}, \frac{\sqrt{n(n-1)}}{2} - \frac{\sqrt{(n-1)(n-2)}}{2}, \frac{\sqrt{n(n+1)}}{2} - \frac{\sqrt{n(n-1)}}{2}$ Correct expression in terms of n . No incorrect terms seen in differences work even if cancelled but condone the occasional poor bracket. There should be no "0" so e.g., $\frac{1}{2} \left(\sqrt{n(n+1)} - 0 \right) \text{ is A0}$ Does not require marks in (a)		<i>L</i> \	/	
$ = \frac{1}{2} \sqrt{n(n+1)} \text{ oe e.g., } \frac{\sqrt{n^2 + n}}{2} $ $ = \frac{1}{2} \sqrt{n(n+1)} \text{ oe e.g., } \frac{\sqrt{n^2 + n}}{2} $ $ = \frac{1}{2} \sqrt{n(n+1)} \text{ oe e.g., } \frac{\sqrt{n^2 + n}}{2} $ $ = \frac{1}{2} \sqrt{n(n+1)} \text{ one e.g., } \frac{\sqrt{n^2 + n}}{2} $ $ = \frac{1}{2} \sqrt{n(n+1)} \text{ one e.g., } \frac{\sqrt{n^2 + n}}{2} $ $ = \frac{1}{2} \sqrt{n(n+1)} \text{ one e.g., } \frac{\sqrt{n^2 + n}}{2} $ $ = \frac{1}{2} \sqrt{n(n+1)} \text{ one e.g., } \frac{\sqrt{n^2 + n}}{2} $ $ = \frac{1}{2} \sqrt{n(n+1)} \text{ one e.g., } \frac{\sqrt{n^2 + n}}{2} $ $ = \frac{1}{2} \sqrt{n(n+1)} \text{ one e.g., } \frac{\sqrt{n^2 + n}}{2} $ $ = \frac{1}{2} \sqrt{n(n+1)} \text{ one e.g., } \frac{\sqrt{n^2 + n}}{2} $ $ = \frac{1}{2} \sqrt{n(n+1)} \text{ one e.g., } \frac{\sqrt{n^2 + n}}{2} $ $ = \frac{1}{2} \sqrt{n(n+1)} \text{ one e.g., } \frac{\sqrt{n^2 + n}}{2} $ $ = \frac{1}{2} \sqrt{n(n+1)} \text{ one e.g., } \frac{\sqrt{n^2 + n}}{2} $ $ = \frac{1}{2} \sqrt{n(n+1)} \text{ one e.g., } \frac{\sqrt{n^2 + n}}{2} $ $ = \frac{1}{2} \sqrt{n(n+1)} \text{ one e.g., } \frac{\sqrt{n^2 + n}}{2} $ $ = \frac{1}{2} \sqrt{n(n+1)} \text{ one e.g., } \frac{\sqrt{n^2 + n}}{2} $ $ = \frac{1}{2} \sqrt{n(n+1)} \text{ one e.g., } \frac{\sqrt{n^2 + n}}{2} $ $ = \frac{1}{2} \sqrt{n(n+1)} \text{ one e.g., } \frac{\sqrt{n^2 + n}}{2} $ $ = \frac{1}{2} \sqrt{n(n+1)} \text{ one e.g., } \frac{\sqrt{n^2 + n}}{2} $ $ = \frac{1}{2} \sqrt{n(n+1)} \text{ one e.g., } \frac{\sqrt{n^2 + n}}{2} $ $ = \frac{1}{2} \sqrt{n(n+1)} \text{ one e.g., } \frac{\sqrt{n^2 + n}}{2} $ $ = \frac{1}{2} \sqrt{n(n+1)} \text{ one e.g., } \frac{\sqrt{n^2 + n}}{2} $ $ = \frac{1}{2} \sqrt{n(n+1)} \text{ one e.g., } \frac{\sqrt{n^2 + n}}{2} $ $ = \frac{1}{2} \sqrt{n(n+1)} \text{ one e.g., } \frac{\sqrt{n^2 + n}}{2} $ $ = \frac{1}{2} \sqrt{n(n+1)} \text{ one e.g., } \frac{\sqrt{n^2 + n}}{2} $ $ = \frac{1}{2} \sqrt{n(n+1)} \text{ one e.g., } \frac{\sqrt{n^2 + n}}{2} $ $ = \frac{1}{2} \sqrt{n(n+1)} \text{ one e.g., } \frac{\sqrt{n^2 + n}}{2} $ $ = \frac{1}{2} \sqrt{n(n+1)} \text{ one e.g., } \frac{\sqrt{n^2 + n}}{2} $ $ = \frac{1}{2} \sqrt{n(n+1)} \text{ one e.g., } \frac{\sqrt{n^2 + n}}{2} $ $ = \frac{1}{2} \sqrt{n(n+1)} \text{ one e.g., } \frac{\sqrt{n^2 + n}}{2} $ $ = \frac{1}{2} \sqrt{n(n+1)} \text{ one e.g., } \frac{\sqrt{n^2 + n}}{2} $ $ = \frac{1}{2} \sqrt{n(n+1)} \text{ one e.g., } \frac{\sqrt{n^2 + n}}{2} $ $ = \frac{1}{2} \sqrt{n(n+1)} \text{ one e.g., } \frac{\sqrt{n^2 + n}}{2} $ $ = \frac{1}{2} \sqrt{n(n+1)} \text{ one e.g., } \frac{\sqrt{n^2 + n}}{2} $ $ = \frac{1}{2} \sqrt{n(n+1)} \text{ one e.g., } \frac{\sqrt{n^2 + n}}{2} $ $ = \frac{1}{2} \sqrt{n(n+1)} \text{ one e.g., } \frac{\sqrt{n^2 + n}}{2} $ $ = \frac{1}{2} \sqrt{n(n+1)} one e.g$				
Correct expression in terms of n . No incorrect terms seen in differences work even if cancelled but condone the occasional poor bracket. There should be no "0" so e.g., $\frac{1}{2} \left(\sqrt{n(n+1)} - 0 \right) \text{ is A0}$ Does not require marks in (a)			2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
·		incorn	Correct expression in terms of <i>n</i> . No rect terms seen in differences work even icelled but condone the occasional poor icket. There should be no "0" so e.g.,	A1
			Does not require marks in (a)	(3)

Question Number	Scheme	Notes	Marks
3(c)	$\sum_{n=1}^{\infty} r = \frac{1}{2} n(n+1) \text{ e.g., sight of } k \times \dots = \sqrt{\frac{1}{2} n(n+1)}$	States or uses the correct summation formula for integers	M1
	$\frac{k}{2}\sqrt{n(n+1)} = \sqrt{\frac{1}{2}n(n+1)} \Rightarrow \frac{k}{2} = \sqrt{\frac{1}{2}} \Rightarrow k = \sqrt{2}$	$\sqrt{2}$ only (Not \pm). $k = \sqrt{2}$ must not come from a clearly incorrect equation.	A1
			(2)
			Total 7

Question Number	Scheme		Notes	Marks
4(a)	$y = \tan\left(\frac{3x}{2}\right) \Rightarrow y' = \frac{3}{2}\sec^2\left(\frac{3x}{2}\right)$		Any correct first derivative. Not implied by $y'(\frac{\pi}{6}) = 3$	B1
	$\Rightarrow y'' = 2 \times \frac{3}{2} \sec\left(\frac{3x}{2}\right) \times \sec\left(\frac{3x}{2}\right) \tan\left(\frac{3x}{2}\right) \times \frac{3}{2}$ $\left[= \frac{9}{2} \sec^2\left(\frac{3x}{2}\right) \tan\left(\frac{3x}{2}\right) \right]$	ks	inpts the second derivative achieving $\sec^2\left(\frac{3x}{2}\right)\tan\left(\frac{3x}{2}\right)$ or unsimplified ivalent. Not implied by $y''\left(\frac{\pi}{6}\right) = 9$	M1
	$\Rightarrow y''' = \frac{9}{2}\sec^2\left(\frac{3x}{2}\right)\sec^2\left(\frac{3x}{2}\right) \times \frac{3}{2} + \frac{9}{2}\tan\left(\frac{3x}{2}\right) \times 2 \times \frac{3}{2}\sec^2\left(\frac{3x}{2}\right)$ $\left[= \frac{27}{4}\sec^4\left(\frac{3x}{2}\right) + \frac{27}{2}\sec^2\left(\frac{3x}{2}\right)\tan^2\left(\frac{3x}{2}\right)\right]$	\ 7	dM1: Attempts third derivative using the product rule, achieving $P \sec^4 \left(\frac{3x}{2}\right) + Q \sec^2 \left(\frac{3x}{2}\right) \tan^2 \left(\frac{3x}{2}\right)$ or unsimplified equivalent. Requires previous M mark. A1: Correct differentiation. Accept unsimplified. Not implied by $y'''\left(\frac{\pi}{6}\right) = 54$	dM1 A1
	If $\sec^2\left(\frac{3x}{2}\right) = \tan^2\left(\frac{3x}{2}\right) + 1$ is used the identity	must b	be used correctly and to score M marks	
	expressions of consistent Note that replacing $\sec^2\left(\frac{3x}{2}\right)$ in $y'' \Rightarrow y'$			
	$y\left(\frac{\pi}{6}\right) = 1, y'\left(\frac{\pi}{6}\right) = 3, y$ Attempts values (but allow numerical trig expressible stated values or insertion in	ssions) f	For y and their 3 derivatives at $\frac{\pi}{6}$ - accept	M1
	$\left(y=\right)1+3\left(x-\frac{\pi}{6}\right)+\frac{9}{2!}\left(x-\frac{\pi}{6}\right)$ Applies Taylor's correctly about $\frac{\pi}{6}$ with their values seen separately the work should imply a correct for following the correct general formula	$\left(x - \frac{\pi}{6}\right)^{2}$ alues/nurrmula bu	$+\frac{54}{3!}\left(x-\frac{\pi}{6}\right)^3 + \dots$ merical trig expressions. If values are not at allow a recognisable attempt at the series	dM1
	$y = 1 + 3\left(x - \frac{\pi}{6}\right) + \frac{9}{2}\left(x - \frac{\pi}{6}\right)^2 + 9\left(x - \frac{\pi}{6}\right)^3 + \dots$	Co	errect expression with coeffs in simplest	A1
	If e.g. $y'''(\frac{\pi}{6})$ is found by calculator but $y'(x)$	x) and y	•	(7)
	Note: With responses that work in sin and composes of form when differentiating (sign and errors with product/quotient formulae). As $y = \tan\left(\frac{3x}{2}\right) = \frac{\sin\left(\frac{3x}{2}\right)}{\cos\left(\frac{3x}{2}\right)} \Rightarrow y'' = \frac{\frac{9}{2}\cos^3\left(\frac{3x}{2}\right)\sin\left(\frac{3x}{2}\right) + \frac{9}{2}\cos\left(\frac{3x}{2}\right)\sin^3\left(\frac{3x}{2}\right)}{\cos^4\left(\frac{3x}{2}\right)}$	and coeff Any use $y' = \frac{\frac{3}{2}}{}$	ficient errors only, also allowing sign of identities must be correct. E.g: $\frac{\cos^2\left(\frac{3x}{2}\right) + \frac{3}{2}\sin^2\left(\frac{3x}{2}\right)}{\cos^2\left(\frac{3x}{2}\right)}$	
	$y''' = \frac{\cos^4\left(\frac{3x}{2}\right)}{\cos^4\left(\frac{3x}{2}\right) + 27\cos^6\left(\frac{3x}{2}\right)\sin^2\left(\frac{3x}{2}\right) + \frac{81}{4}\cos^4\left(\frac{3x}{2}\right)}{\cos^8\left(\frac{3x}{2}\right)}$		()	

Question Number	Scheme	Notes	Marks
4(b)	$\left\{y\left(\frac{\pi}{4}\right) = \right\}1 + 3\left(\frac{\pi}{4} - \frac{\pi}{6}\right) + \frac{9}{2}\left(\frac{\pi}{4} - \frac{\pi}{6}\right)$	$\left(-\frac{\pi}{6}\right)^2 + 9\left(\frac{\pi}{4} - \frac{\pi}{6}\right)^3$	
	or $1+3\left(\frac{\pi}{12}\right)+\frac{9}{2}\left(\frac{\pi}{12}\right)^2$	$+9\left(\frac{\pi}{12}\right)^3$	
	Substitutes $\frac{\pi}{4}$ into their expression for y of the	correct form with at least the first	M1
	three terms (series about $\frac{\pi}{6}$). Must have values	(not unevaluated trig expressions).	
	If only a decimal value is given then it must be (2.255314325)		
	If there is no working they must obtain an expre	ession with at least $a + b\pi + c\pi^2$ and	
	correct exact ft a , b and c for their series or 1	$+\frac{\pi}{4} + c\pi^2$ with correct exact ft c	
	$=1+\frac{\pi}{4}+\frac{\pi^2}{32}+\frac{\pi^3}{192} \text{ or } 1+\frac{1}{4}\pi+\frac{1}{32}\pi^2+\frac{1}{192}\pi^3$	Correct answer or values for <i>A</i> (32) and <i>B</i> (192). Can be awarded if full marks were not scored in (a).	A1
		` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	(2)
			Total 9

Question Number	Scheme	Notes	Marks
5	$r^2 = 100\cos^2\theta + 20\cos\theta\tan\theta + \tan^2\theta$	Any correct expression for r^2	B1
	$\left\{\frac{1}{2}\right\} \int_0^{\frac{\pi}{3}} r^2 d\theta = \left\{\frac{1}{2}\right\} \int_0^{\frac{\pi}{3}} \left(100\cos^2\theta + 20\sin\theta + \tan^2\theta\right) \left\{d\theta\right\}$	Attempts formula for the area with their r^2 which may not be expanded Condone missing $\frac{1}{2}$ and limits not required	M1
	$= \frac{1}{2} \int_{0}^{\frac{\pi}{3}} \left(50 \left(1 + \cos 2\theta \right) + 20 \sin \theta + \sin \theta \right) d\theta$ M1 : Uses $\cos^{2}\theta = \pm \frac{1}{2} \pm \frac{1}{2} \cos 2\theta$ or $\tan^{2}\theta = \pm \frac{1}{2} \pm \frac{1}{2} \cos 2\theta$ and $\tan^{2}\theta = \pm \frac{1}{2} \pm \frac{1}{2} \cos 2\theta$ and $\tan^{2}\theta = \pm \frac{1}{2} \pm \frac{1}{2} \cos 2\theta$ and $\tan^{2}\theta = \pm \frac{1}{2} \pm \frac{1}{2} \cos 2\theta$ Both M marks can be scored without the Condone mixed variable Condone mixed variable $\tan \theta = \frac{1}{2} \pm \frac{1}{2} \cos 2\theta$ $\cos \theta \tan \theta = \frac{1}{2} \pm \frac{1}{2} \cos 2\theta$ $\cos \theta \tan \theta = \frac{1}{2} \pm \frac{1}{2} \cos 2\theta$ The $\frac{1}{2}$ is required (it may be seen later) but limits/de variables if subsequent work rec	$=\pm\sec^2\theta\pm1$ in their r^2 $^2\theta=\pm\sec^2\theta\pm1$ in their r^2 integral and the $\frac{1}{2}$. es. θ and $\tan^2\theta=\sec^2\theta-1$. The propriately integrated later). θ are not needed. Allow mixed	M1 M1 A1
	$= \frac{1}{2} \left[49\theta + 25\sin 2\theta - 20\cos \theta + \tan \theta \right]_0^{\frac{\pi}{3}} \text{ or } \left[\frac{49}{2}\theta + \frac{49}{2}\theta \right]_0^{\frac{\pi}{3}} $ M1 : Achieves three of the following four $k \to k\theta$ (at least once), $\cos 2\theta \to \sin 2\theta$, $\sin \theta$. Ignore other terms if 3 of the above are satisfied. No mixed variables. A1 : Correct integration including the $\frac{1}{2}$ (may be seen May be unsimplified e.g., 49θ seen as $50\theta - \theta$ subsequent work recovers	or integrated forms: $\rightarrow\cos\theta$, $\sec^2\theta \rightarrow\tan\theta$. $\frac{1}{2}$ or limits required. Condone en later). Limits not required. . Allow mixed variables if	M1 A1
	$= \frac{1}{2} \left(\frac{49\pi}{3} + 25\sin\frac{2\pi}{3} - 20\cos\frac{\pi}{3} + \tan\frac{\pi}{3} - \frac{1}{2} \left(\frac{49\pi}{3} + \frac{25\sqrt{3}}{2} - 10 + \sqrt{3} + 20 \right) \right) $ or $\frac{49\pi}{6}$. Applies the correct limits to an expression of the form $(p,q,r,s\neq 0)$ Allow slips but there must be a clear must only subtract the value of their r , e.g. if $r = (-20)$ or $+20$. Allow mixed variables if the	$+\frac{25\sqrt{3}}{4} - 5 + \frac{\sqrt{3}}{2} + 10$ $\text{m } p\theta + q \sin 2\theta + r \cos \theta + s \tan \theta$ attempt to substitute, and they $20 \text{ work must have or imply}$	M1
	$=\frac{1}{12}\Big(98\pi+81\sqrt{3}+60\Big)$	Correct answer or values for <i>a</i> , <i>b</i> & <i>c</i>	A1
	Note that there are other viable routes through the integration	on e.g., use of integration by parts	(9) Total 9
			- 5001 /

Question Number	Scheme	Notes	Marks
6	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 6\frac{\mathrm{d}x}{\mathrm{d}t} + 13x = 8\mathrm{e}^{-3t}$	t0	
(a)	$m^{2} + 6m + 13 = 0 \Rightarrow m = \frac{-6 \pm \sqrt{36 - 52}}{2}$ $\left\{ = -3 \pm 2i \right\}$	Forms correct auxiliary equation and obtains a correct numerical expression for at least one root by formula or uses CTS (apply usual CTS rule below). One correct root if no working	M1
	CTS rule: $m^2 + 6m + 13 = 0 \Rightarrow \left(m \pm \frac{6}{2}\right)$	$= \frac{1}{2} \pm q \pm 13 = 0, q \neq 0 \Longrightarrow m = \dots$	
	CF examples: $(x =) e^{-3t} \left(A\cos 2t + B\sin 2t \right)$ or $(x =) Ae^{-3t} \cos \left(-2t \right) + Be^{-3t} \sin \left(-2t \right)$ or $(x =) Pe^{\left(-3+2i \right)t} + Qe^{\left(-3-2i \right)t}$ or $(x =) e^{-3t} \left(Pe^{2it} + Qe^{-2it} \right)$	Correct complementary function in any form, allow if the "x =" is missing or wrong and accept for this mark if the CF is given fully in terms of x instead of t.	A1
	PI: $\left\{x=\right\}\lambda e^{-3t}$	Correct form for the particular integral selected. Must include λe^{-3t} but accept with any extra terms that correctly disappear when coefficients found. Accept "PI=". If λe^{pt} is used $p = -3$ must be seen later.	В1
	$\frac{\mathrm{d}x}{\mathrm{d}t} = -3\lambda \mathrm{e}^{-3t} \ ; \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = 9\lambda \mathrm{e}^{-3t}$ $\Rightarrow 9\lambda \mathrm{e}^{-3t} + 6\left(-3\lambda \mathrm{e}^{-3t}\right) + 13\lambda \mathrm{e}^{-3t} = 8\mathrm{e}^{-3t}$	Differentiates a PI of any form twice (provided it has at least one constant and is a function of <i>t</i>) and substitutes into the equation. Allow only sign/coefficient errors only in the differentiation. Their PI must lead to non-zero derivatives.	M1
	$\Rightarrow 9\lambda - 18\lambda + 13\lambda = 8 \Rightarrow \lambda = \dots (2)$	Proceeds to find the value of the constant following use of a PI of the correct form. Any unnecessary extra terms in the PI must be found to be zero	dM1
	$x = "e^{-3t} \left(A\cos 2t + B\sin 2t \right) " + 2e^{-3t}$	Correct general solution ft on their CF only – any CF provided it has at least one constant and is in terms of t. Must have x = Do not allow if their CF is miscopied or mathematically changed	A1ft
	Work with a PI of the form λte^{-3t} is B0M1dN Only condone incorrect variables if they are refirst A1.		(6)

Question	Scheme		Notes	Marks
Number 6(b)	1			
O(D)	$x = \frac{1}{2}$ at $t = 0$		ondition for x in their GS	
	to find a linear equation in one or two constants. Allow for $GS = CF$ or $CF + CF$		-	M1
	$\Rightarrow \frac{1}{2} = A + 2 \left(\Rightarrow A = -\frac{3}{2} \right)$		t may come from the +PI	
	$x = e^{-3t} \left(A \cos 2 \right)$	$t + B\sin 2t + 2e^{-3}$	it	
	$\frac{\mathrm{d}x}{\mathrm{d}t} = \mathrm{e}^{-3t} \left(-2A\sin 2t + 2B\cos 2t \right)$	$-3e^{-3t}\left(A\cos 2t + \right)$	$B\sin 2t\Big)-6e^{-3t}$	
	Uses the product rule to differentiate		_	
	terms of t of the correct form for their G not allow e.g., $e^{pt} \rightarrowe^{qt}$). Allow for	_	=	M1
		constants.	+ F1 and does not have to	
	If they work with a complex function e.	g., $x = Pe^{(-3+2i)t}$	$+Qe^{(-3-2i)t} + 2e^{-3t}$ progress	
	is ur	ılikely.		
	This mark is not so			
	$t = 0, \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{2} \Rightarrow \frac{1}{2} = 2.$	$B - 3A - 6 \Rightarrow B =$	(=1)	
	Uses both initial conditions to find value		· · · · · · · · · · · · · · · · · · ·	ddM1
	GS = (CF with 2 constants) + PI(no c	constants). One con-zero.	onstant must be found to	C-C
		on-zeio. Orevious M mark	SS.	
	Examples:		Correct particular	
	$x = e^{-3t} \left(-\frac{3}{2} \cos 2t + \sin 2t \right) + 2$	e^{-3t}	solution in any form in terms of t .	
	(-		Must be $x = \dots \text{unless}$	A1
	or $x = e^{-3t} \left(-\frac{3}{2} \cos 2t + \sin 2t + \right)$	2	this was the only reason	AI
	or $x = 2e^{-3t} - \frac{3}{2}e^{-3t}\cos 2t + e^{-3t}$,	for final A0 in part (a) due to omission or e.g,	
	01 x - 2e	SIII 2 <i>t</i>	" $y = \dots$ " was used	
(a)				(4)
(c)	$\frac{\mathrm{d}x}{\mathrm{d}t} = \mathrm{e}^{-3t} \left(3\sin 2t + 2\cos 2t \right) - 3\epsilon$	$e^{-3t}\left(-\frac{3}{2}\cos 2t + \sin t\right)$	$\begin{vmatrix} -6e^{-3t} = 0 \end{vmatrix}$	
	,		M1	
	Sets an expression for $\frac{dx}{dt} = 0$. Accept with	h any unfound con	stants provided $\frac{d}{dt} = f(t)$	
	$\left(3\sin 2t + 2\cos 2t\right) - 3\left(-\frac{1}{2}\right)$	$-\frac{3}{2}\cos 2t + \sin 2t$	5=0	
	Achieves an equation of the form as:	$ in bt + c \cos bt + d $	=0 or equivalent with	dM1
	terms uncollected. One of a and c non-zero and b and d non-zero.			uivii
	Must follow a GS = CF + PI where two constants were found for the CF and one for the PI. Requires previous M mark.			
	$\cos 2t = \frac{12}{13} \Rightarrow t = 0.1973955598 \Rightarrow x \text{ or } a = \frac{1}{2}e^{-3(0.1973)} \left(4 - 3 \times \frac{12}{13} + 2\sin(2 \times 0.1973)\right) =$			
	Finds a value of t from $\cos kt = c$ ($k \ne 1, -1 < c < 1$) and uses their positive (or made		ddM1	
	positive) value of t to find a value of x (or a) via their PS. Accept a pair of stated values.			
	Requires both p $x \text{ or } a = 0.553(1164729)$	orevious M marks 9)	awrt 0.553	A1
		• /		(4)
				Total 14

Question Number	Scheme	Notes	Marks
7(a) Way 1	$w = \frac{z-3}{2i-z} \Rightarrow 2iw - wz = z-3 \Rightarrow z = \dots$	Attempts to make z the subject and obtains any $f(w)$	M1
	$z = \frac{3 + 2iw}{w + 1}$ or $\frac{-3 - 2iw}{-w - 1}$	Any correct expression for <i>z</i> in terms of <i>w</i>	A1
	$w+1 -w-1$ $= \frac{3+2iu-2v}{u+iv+1} \times \frac{u+1-iv}{u+1-iv}$ Applies $w = u + iv$ and a correct multiplier for their z see result from their z . Denominator must have had a " w ". No	te alternative route below.	M1
	$x+iy = \frac{3+2iu-2v}{u+iv+1} \times \frac{u+1-iv}{u+1-iv} = \frac{(3-2v)(u+1)+2uv+2u(u+1)^2+v}{(u+1)^2+v}$ $y = x+3 \text{ oe } \Rightarrow \frac{2u(u+1)-(3-2v)v}{(u+1)^2+v^2} = \frac{(3-2v)(u+1)^2+v}{(u+1)^2+v^2}$ Multiplies, extracts real and imaginary parts and uses them in the produce an equation in u and v only – no "i"s. Condone v = slips with multiplier but denominator of v must have Note: Just v Just	$\frac{(u+1)+2uv}{1)^2+v^2}+3$ the equation $y=x+3$ (oe) to i. if recovered. Can follow ave had a "w" s M0 (lost denominators)	M1
	$2u(u+1) - (3-2v)v = (3-2v)(u+1) + 2uv + 3(u+1)^{2} + 3v^{2}$ $\Rightarrow u^{2} + 7u + v^{2} + v + 6 = 0$	Expands and simplifies to obtain an equation of a circle with 4 or 5 real unlike terms. All previous Ms required.	dddM1
	$x + iy = \frac{3 + 2iu - 2v}{u + iv + 1} \Rightarrow \left(x + i\left(x + 3\right)\right) \left(u + 1 + iv\right)$ $\mathbf{M1:} \text{ Applies } z = x + iy, \text{ uses } y = x + 3 \text{ and cro}$ $x(u+1) - v(x+3) + (x+3)(u+1)i + xvi = 3$ $\Rightarrow ux + x - vx - 3v = 3 - 2v, ux + x + 3u + 3$ $\Rightarrow x = \frac{3 + v}{u + 1 - v}, x = \frac{-u - 3}{u + 1 + v}$ $\mathbf{M1:} \text{ Equates real and imaginary parts and makes } x$ $(3+v)(u+1+v) = -(u+3)(u+1-v) \Rightarrow 3u + 3 + 3v + uv + v + v + v + v + v + v + v + v +$	ss multiplies $3-2v+2ui$ $3+xv=2u$ the subject twice	
	M1: Equates expressions for x to obtain a circle equation with $\Rightarrow \left(u + \frac{7}{2}\right)^2 + \left(v + \frac{1}{2}\right)^2 = \frac{49}{4} + \frac{1}{4} - 6 = \frac{13}{2} \Rightarrow \text{centre:} \left(-\frac{7}{2}\right)^2$ M1: Extracts the centre and/or radius from their circle equation or 5 real unlike terms. Circle equation must not be in terms of correct coordinate (but condone wrong sign) or the correct May use $u^2 + v^2 + 2gu + 2fv + c = 0 \Rightarrow \text{centre:} \left(-g, -f\right)$ A1: For a correct centre or radius from a correct A1: For correct centre and radius from a correct Centre as coordinates, $x/u =, y/v =$ or as $-\frac{7}{2} - \frac{1}{2}$. Allow exact equivalents for coordinates	radius: $\frac{\sqrt{26}}{2}$ or $\sqrt{\frac{13}{2}}$ on, however obtained, with 4 of z or w . They must get one tradius for their circle. The radius is $\sqrt{g^2 + f^2 - c}$ of the circle equation to the equation in and allow $\left(-\frac{7}{2}, -\frac{1}{2}i\right)$	M1 A1 A1
			(8)

Question Number	Scheme	Notes	Marks
7(a) Way 2	$w = \frac{z-3}{2i-z} = \frac{x+iy-3}{2i-x-iy} = \frac{x-3+i(x+3)}{2i-x-i(x+3)}$ [Note that it is possible to replace x with y - 3]	M1: Uses $z = x + iy$ and $y = x + 3$ in the given transformation A1: Correct expression for w in terms of x	M1 A1
	$\frac{x-3+i(x+3)}{-x-i(x+1)} = u+iv \Rightarrow x-3+i(x+3) = -xu+v(x+1)-iu(x+1)-ivx$	Applies $w = u + iv$ and multiplies	M1
	$x-3 = -ux + vx + v, x+3 = -ux - u - vx$ $x = \frac{3+v}{1+u-v}, x = \frac{-3-u}{1+u+v}$	Equates real and imaginary parts and makes <i>x</i> the subject twice	M1
	$3+3u+3v+v+uv+v^{2} = -3-3u+3v-u-u^{2}+uv$ $\Rightarrow u^{2}+v^{2}+7u+v+6=0$	Equates expressions for <i>x</i> to obtain a circle equation with 4 or 5 real unlike terms. All previous Ms required.	dddM1
	$\Rightarrow \left(u + \frac{7}{2}\right)^2 + \left(v + \frac{1}{2}\right)^2 = \frac{49}{4} + \frac{1}{4} - 6 = \frac{13}{2} \Rightarrow \text{centre:} \left(-\frac{13}{2}\right)^2 + \left(v + \frac{1}{2}\right)^2 = \frac{49}{4} + \frac{1}{4} - 6 = \frac{13}{2} \Rightarrow \text{centre:} \left(-\frac{13}{2}\right)^2 + \left(v + \frac{1}{2}\right)^2 = \frac{49}{4} + \frac{1}{4} - 6 = \frac{13}{2} \Rightarrow \text{centre:} \left(-\frac{13}{2}\right)^2 + \left(v + \frac{1}{2}\right)^2 = \frac{49}{4} + \frac{1}{4} - 6 = \frac{13}{2} \Rightarrow \text{centre:} \left(-\frac{13}{2}\right)^2 + \left(v + \frac{1}{2}\right)^2 = \frac{49}{4} + \frac{1}{4} - 6 = \frac{13}{2} \Rightarrow \text{centre:} \left(-\frac{13}{2}\right)^2 + \left(v + \frac{1}{2}\right)^2 = \frac{49}{4} + \frac{1}{4} - 6 = \frac{13}{2} \Rightarrow \text{centre:} \left(-\frac{13}{2}\right)^2 + \left(v + \frac{1}{2}\right)^2 = \frac{49}{4} + \frac{1}{4} - 6 = \frac{13}{2} \Rightarrow \text{centre:} \left(-\frac{13}{2}\right)^2 + \left(v + \frac{1}{2}\right)^2 = \frac{49}{4} + \frac{1}{4} - 6 = \frac{13}{2} \Rightarrow \text{centre:} \left(-\frac{13}{2}\right)^2 + \frac{1}{4} + \frac{1}{4} - \frac{1}{4} = \frac{13}{4} + \frac{1}{4} - \frac{1}{4} + \frac{1}{4} - \frac{1}{4} = \frac{13}{4} + \frac{1}{4} - \frac{1}{4} $	$\left(\frac{7}{2}, -\frac{1}{2}\right)$ radius: $\frac{\sqrt{26}}{2}$ or $\sqrt{\frac{13}{2}}$	
	M1: Applies a correct process to extract the centre a equation, however obtained, with 4 or 5 real unlike to (but condone wrong sign) or radius correct	rms. One correct coordinate t for their circle.	M1 A1
	May use $u^2 + v^2 + 2gu + 2fv + c = 0 \Rightarrow$ centre: $(-g, -1)$ A1 : For correct centre or radius from a correct		A1
	A1: For correct centre and radius from a corr	<u>=</u>	
	Centre as coordinates, $x/u =, y/v =$ or as $-\frac{7}{2} - \frac{1}{2}i$	and allow $\left(-\frac{7}{2}, -\frac{1}{2}i\right)$ (8)	
Way 3	e.g., 3 points on line are $(0,3)$, $(1,4)$ and $(2,5)$ or $z_1 = 3i$, $z_2 = 1 + 4i$, $z_3 = 2 + 5i$	Attempts three points/complex numbers on $y = x + 3$ with 2 correct	M1
	$w = \frac{z - 3}{2i - z} \Rightarrow w_1 = \frac{3i - 3}{-i} w_2 = \frac{-2 + 4i}{-1 - 2i} w_3 = \frac{-1 + 5i}{-2 - 3i}$ $w_1 = \frac{3i - 3}{-i} \times \frac{i}{i} w_2 = \frac{-2 + 4i}{-1 - 2i} \times \frac{-1 + 2i}{-1 + 2i} w_3 = \frac{-2i + 2i}{-1 - 2i}$	Correct transformed complex numbers	A1
	$w_1 = \frac{3i-3}{-i} \times \frac{i}{i} w_2 = \frac{-2+4i}{-1-2i} \times \frac{-1+2i}{-1+2i} w_3 = \frac{-2+4i}{-1+2i} \times \frac{-2+4i}{-1+2i} \times \frac{-2+4i}{-1+2i} w_3 = \frac{-2+4i}{-1+2i} \times \frac{-2+4i}{-1+2i} \times \frac{-2+4i}{-1+2i} w_3 = \frac{-2+4i}{-1+2i} \times \frac{-2+4i}{-1+2i} \times \frac{-2+4i}{-1+2i} w_3 = \frac{-2+4i}{-1+2i} \times \frac{-2+4i}{-1+2i} $	ninator seen or implied (one if ex numbers on line	M1
	$w_1 = -3 - 3i$ $w_2 = -\frac{6}{5} - \frac{8}{5}i$ $w_3 = -1 - i$	Two correct complex numbers in $a + ib$ form or as points	M1
	e.g., $x + y + 2gx + 2fy + c = 0 \Rightarrow \frac{1}{5}g + \frac{1}{5}f - c = 0$	Uses a correct general equation of a circle to form hree simultaneous equations. All previous Ms required.	dddM1
	$\Rightarrow g = \frac{7}{2}, \ f = \frac{1}{2}, \ c = 6 \Rightarrow \text{centre } (-g, -f) : \left(-\frac{7}{2}, -\frac{1}{2}\right) \text{ radius}$,	M1
	M1: Solves and obtains at least one correct coordinate radius for their constants A1: Correct centre or radius from co		A1 A1
	A1: Correct centre of radius from co		

Question Number	Scheme	Notes	Marks
7(b) (i) & (ii)		M1: Any circle with the whole interior indicated. Ignore any inconsistencies with their stated centre, value for radius (which may have been negative) or circle equation. If shaded, consider the shaded area but if not allow any credible indication such as an "R" inside the circle unless they have clearly indicated a segment. A1: Correct circle drawn in the correct position with whole interior shaded. Entirely in quadrants 2 & 3 and centre if marked in Q3 (if not marked then more than half of the circle in Q3). Condone if it appears that the area above the x-axis is greater than the area below provided the centre is indicated in Q3. Must be shaded but does not require a label. Circumference may be dotted/dashed line. Ignore incorrect labelling of centre/axes/intersections but requires full marks in (a).	M1 (B1 on ePen) A1 (B1 on ePen)
			(2)
			Total 10

Question Number	Scheme	Notes	Marks
8(a)	Allow "single fraction" to be implied by sum/difference of fractions with same denominator or a product of fractions. No further fractions in numerator/denominator.		

2 sin	$\frac{+2\sin^2 x}{x\cos x}$ \Rightarrow	Uses sufficient correct	
$\frac{2\cos^2 x - 1 + 2\sin^2 x}{\sin 2x}$ $OR \frac{\cos 2x}{\cos x}$ $\Rightarrow \frac{\cos 2x + \frac{\sin x}{\cos x} \times 2\sin x}{\sin 2x}$ $OR \frac{\cos 2x \cot x}{\sin 2x}$ $OR \frac{\cos 2x \cot x}{\sin 2x}$ $OR \frac{\cos 2x \cot x}{\sin 2x}$	$\frac{x}{2\sin x \cos x}$ or $\frac{x}{2\sin x \cos x}$ $\frac{x}{\sin 2x}$ or $\frac{\cos 2x + 1 - \cos 2x}{\sin 2x}$ $\frac{x + \tan x \sin 2x}{\sin 2x} \Rightarrow$ $\frac{\cos x}{\sin 2x} \Rightarrow \text{e.g.,} \frac{1 - 2\sin^2 x + 2\sin^2 x}{\sin 2x}$ $\frac{\cos x + \sin x \sin 2x}{\sin 2x} \Rightarrow$ $\frac{\cos x + \sin x \sin 2x}{\sin 2x \cos x}$ $\frac{-\sin^2 x \cos x + 2\sin^2 x \cos x}{\sin 2x \cos x}$	identities e.g., $\cos 2x = 1 - 2\sin^2 x$ $\cos 2x = \cos^2 x - \sin^2 x$ $\cos 2x = 2\cos^2 x - 1$ $2\sin^2 x = 1 - \cos 2x$ $\cos 2x \cos x + \sin x \sin 2x = \cos(2x - x)$ to obtain a correct single fraction with numerator in terms of $\sin x$ and/or $\cos x$ or " $\cos 2x + 1 - \cos 2x$ ". A qualifying fraction must be seen before $\frac{1}{2\sin x \cos x}$ or $\frac{1}{\sin 2x}$ Condone poor notation.	A1 (M1 on ePen)
$=\frac{1}{2\sin x \cos x}$	or $\frac{1}{\sin 2x} = \csc 2x^*$	Fully correct proof with one of the two intermediate fractions seen. All notation correct – no mixed or missing arguments or e.g. $\sin x^2$ for this mark.	A1*
			(3)
$\cot 2x \left\{ + \tan x \right\}$	$= \frac{1 - \tan^2 x}{2 \tan x} \left\{ + \tan x \right\}$	Uses $\cot 2x = \frac{1 - \tan^2 x}{2 \tan x}$	M1
e.g., $\frac{\tan^2 x + 1}{2 \tan x} \Rightarrow \frac{\left(\frac{\sin x}{\cos x}\right)}{2 \frac{\sin x}{\cos x}}$ or $\frac{\tan^2 x + 1}{2 \tan x} \left\{ \times \frac{c}{c} \right\}$	$\frac{x + 2\tan^2 x}{\tan x} \Rightarrow \frac{\cos x \left(\sin^2 x + \cos^2 x\right)}{2\cos^2 x \sin x}$ $\frac{\cos x}{\cos x} \Rightarrow \frac{\sin^2 x + \cos^2 x}{2\sin x \cos x}$ or $\frac{\cos x}{2\cos^2 x \sin x}$	Uses correct identities e.g., $\tan x = \frac{\sin x}{\cos x} \text{ oe}$ to obtain a correct single fraction in $\sin x$ and $\cos x$ but allow $\frac{\sec^2 x}{2\tan x} \text{ following use of}$ $\sec^2 x = 1 + \tan^2 x$ A qualifying fraction must be seen before $\frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x}$ Condone poor notation.	A1 (M1 on ePen)
$\frac{1}{2\sin x \cos x} \text{ o}$	$r \frac{1}{\sin 2x} = \csc 2x^*$	Fully correct proof with one of the two intermediate fractions seen. All notation correct – no mixed or missing arguments or e.g. $\sin x^2$ for this mark.	A1*

Question Number	Scheme	Notes	Marks
8 (b)	8(b) Examples:		M1 A1

$y^{2} = w \sin 2x \Rightarrow 2y \frac{dy}{dx} = \frac{dw}{dx} \sin 2x + 2w \cos 2x$	
or $y = w^{\frac{1}{2}} (\sin 2x)^{\frac{1}{2}} \Rightarrow \frac{dy}{dx} = \frac{1}{2} w^{\frac{1}{2}} (\sin 2x)^{-\frac{1}{2}} (2\cos 2x) + \frac{1}{2} w^{-\frac{1}{2}} \frac{dw}{dx} (\sin 2x)^{\frac{1}{2}}$	
or $w = \frac{y^2}{\sin 2x} \Rightarrow \frac{dw}{dx} = \frac{2y\sin 2x \frac{dy}{dx} - y^2.2\cos 2x}{\sin^2 2x}$	
or $w = y^2 \csc 2x \Rightarrow 2y \frac{dy}{dx} \csc 2x - 2y^2 \csc 2x \cot 2x$	
M1: Attempts the differentiation of the given substitution using the	
product/quotient and chain rules and obtains an equation in $\frac{dy}{dx}$ and $\frac{dw}{dx}$ of the	
correct form (sign/coefficient errors only and allow sign errors with quotient/product rule).	
This mark is not available for work in $\frac{dy}{dw}$ or $\frac{dw}{dy}$ unless appropriate work follows to	
achieve an equation in $\frac{dy}{dx}$ and $\frac{dw}{dx}$ of the correct form.	
A1: Correct differentiation	
$y\frac{dy}{dx} + y^2 \tan x = \sin x \to e.g., \frac{1}{2} \left(\frac{dw}{dx} \sin 2x + 2w\cos 2x\right) + w\sin 2x \tan x = \sin x$	
A recognisable attempt to eliminate y from the original equation to obtain an	M1
equation involving $\frac{dw}{dx}$, w and x only. Not dependent.	
$\Rightarrow \frac{\mathrm{d}w}{\mathrm{d}x} + 2w(\cot 2x + \tan x) = \frac{2\sin x}{\sin 2x}$	
$\Rightarrow \frac{\mathrm{d}w}{\mathrm{d}x} + 2w\mathrm{cosec}\ 2x = \mathrm{sec}\ x \ *$	
Fully correct work leading to the given equation with $2w(\cot 2x + \tan x)$ or e.g.,	A1*
$2w\cot 2x + 2w\tan x$ clearly replaced by $2w\csc 2x$ but allow $\cot 2x$ written as	1.1
$\frac{1}{\tan 2x} \operatorname{or} \frac{\cos 2x}{\sin 2x} \text{ and/or } \tan x \text{ written as } \frac{\sin x}{\cos x}$	
If the result in (a) is not clearly used there must be full equivalent work. Allow use of "csc $2x$ "	
	(4)

Question	Scheme	Notes	Marks
Number			

	·		
8(c)	$\frac{dw}{dx} + 2w\csc 2x = \sec x \Rightarrow IF = e^{2\int \csc 2x dx} = \tan x$ or $e^{-\ln(\csc 2x + \cot 2x)} \Rightarrow \frac{1}{\csc 2x + \cot 2x}$ or $\frac{1}{\cot x}$ or $\tan x$	M1: $e^{2\int \csc 2x(dx)}$ condoning omission of one or both "2"s A1: $\tan x$ oe Allow $k \tan x$ e.g., $e^{2c} \tan x$ Not just $e^{\ln(\tan x)}$	M1 A1
	$\Rightarrow w"\tan x" = \int "\tan x" \sec x \left\{ dx \right\}$	Correctly applies their integrating factor to the equation, i.e., $\Rightarrow \text{IF} \times w = \int \text{IF} \times \sec x \left\{ dx \right\}$ Allow equivalents for $\sec x$. Condone "y" used for "w" for this mark.	M1
	$\Rightarrow w \tan x = \sec x (+c)$	Correct equation oe with or without constant.	A1
	Using IF = $\frac{1}{\csc 2x + \cot 2x}$ \Rightarrow RHS of $\int \frac{\sec x}{\csc 2x + \cot 2x} dx$ which is likely to need rewriting as $\int \tan x \sec x dx$		
	Note that IBP on $\sec x \tan x$ by writing it as $\sec^2 x \sin x$ can Use Review for any attempts at integration y		
	e.g., $y^2 = w \sin 2x$ and $w \tan x = \sec x + c \Rightarrow -\frac{1}{2}$		
	$\Rightarrow y^2 = \dots \left\{ \frac{\sin 2x}{\tan x} \left(\sec x + \frac{\sin 2x}{\tan x} \right) \right\}$ Substitutes for w correctly and reac Their $y^2 = \dots$ must be consistent with their equation	$c)$ hes $y^2 = \dots$	
	followed their integration		ddM1
	This mark requires both previous M marks and that includes a "+ c "	an attempt at integration	
	A further example is:	csin 2 v	
	$w = \csc x + \frac{c}{\tan x} \Longrightarrow y^2 = \csc x \sin x$	$2x + \frac{c \sin 2x}{\tan x}$	
	$\begin{cases} e.g., \ y^2 = \frac{2\sin x \cos^2 x}{\sin x} \left(\frac{1}{\cos x} + c \right) \end{cases}$	\Rightarrow	
	$y^2 = 2\cos x + A\cos^2 x$		A 1
	Any correct $y^2 =$ equation with RHS fully in te		A1
	$y^2 = 2\cos x + 2c\cos^2 x$ $y^2 = \cos x(2 + A\cos x)$		
	Ignore any inconsistencies with the constant e.	g., 2c later written as c	(6)
			(6) Total 13